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Abstract

Action-angle variables are strong mathematical tools 
for discussing the old quantum theory. In a 1918 mem
oir, Bohr used the action variables and explained in a 
footnote their importance in the quantum context. The 
idea of the action-angle variables appeared in celestial 
mechanics at the beginning of the twentieth century 
and grew within the old quantum theory thanks to the 
efforts of Schwarzschild and Epstein on the Stark prob
lem. Its development was closely connected to discov
eries of the mathematical properties of systems for 
which the Hamilton-Jacobi equation is completely 
separable. Our investigation also clarifies how notions 
that appeared in Bohr’s memoir were established, con
cerning in particular the relationship between proper
ties of the Hamilton-Jacobi equation and conditionally 
periodic motion, the treatment of degenerate systems, 
and action-angle variables.

Keywords: Stark effect; conditionally periodic motion; 
Karl Schwarzschild; Paul Epstein; Carl V. L. Charlier; 
Hamilton-Jacobi equation; Stäckel’s formulas.
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SCI.DAN.M. I THE ORIGINS OF ACTION-ANGLE VARIABLES

1. Introduction

In 1918, Niels Bohr published an important memoir in three parts 
titled “On the Quantum Theory of Line-Spectra”. The first part of 
the paper was devoted to periodic systems with one degree of free
dom and conditionally periodic motions. Bohr knew conditionally 
periodic motions occur if the system is described by a Hamilton- 
Jacobi equation for which the variables were completely separable. 
Bohr assumed such a system and, on introducing the so-called ac
tion variables that have the same dimension as action, explained 
properties of the system. While noting the relation between the ac
tion variables and invariability for slow mechanical transforma
tions, Bohr mentioned the independent work of Schwarzschild and 
Epstein on the Stark effect for which the action integral were related 
to the so-called angle variables.1 2 In a footnote, Bohr explained the 
canonical variables, which are composed of action variables and an
gle variables.8 His footnote covers the essentials of the modern defi
nition of action-angle variables.3 Bohr’s 1918 paper paid special at
tention, not to these canonical variables, but to action variables. 
However, he regarded action variables as being constructed from 
canonical variables with angle variables. This paper examines the 
historical development in constructing the action-angle variables.

1. Bohr (1918), pp. 21-22.
2. Bohr (1918), pp. 29-30.
3. For example, Goldstein, Poole, and Safko (2002), pp. 452-463.
4. We confirm that the action variables were used in celestial mechanics at latest at 
the end of the nineteenth century in Whittaker (1899), pp.153-154. However, these 
variables were not treated as canonical variables whose counterparts were action 
variables. Jammer (1966), p. 103, seemed to confuse these facts and wrote that action
angle variables were fully recognized in astronomy in the era of Poincaré and 
Charlier.

Angle variables had been used in celestial mechanics indepen
dently of their use in the Hamilton-Jacobi theory.4 Our interest is in 
the process through which angle variables when paired with action 
variables came to be treated as canonical variables. To begin, we 
shall recall this process as it evolved in celestial mechanics. In devel
oping the early Hamilton-Jacobi theory, mathematicians noted a 
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system for which the variables of the associated Hamilton-Jacobi 
equation were completely separable, and obtained a couple of 
mathematical properties guaranteeing that conditionally periodic 
motion occurs in the system.

In parallel, the Hamilton-Jacobi theory at the end of the nine
teenth century began to involve aspects of transformation theory. Re
arranging the results of his predecessors, such as Jacobi, Paul Stäckel, 
Hugo Gyldén, and Henri Poincaré, Carl Vilhelm Ludwig Charlier 
derived, in the second volume of his textbook series on celestial me
chanics published in 1907, a special set of the canonical variables 
composed of the action integral and the angle variable. These varia
bles were generalized and introduced into quantum theory by Karl 
Schwarzschild in a 1916 paper that explained the Stark effect. Paul 
Epstein published his results on the Stark effect almost at the same 
time. After encountering Schwarzschild’s ideas, Epstein rearranged 
and expanded on them. Next, we shall examine the work of these two 
scientists who Bohr mentioned in his introduction of his 1918 paper.

There are several historical articles that discuss Schwarzschild’s 
usage of action-angle variables in the Stark problem. These articles 
explain his rather modern introduction of the action-angle varia
bles.5 However, Schwarzschild did not hold this modern under
standing of these variables when he analyzed the Stark problem. 
These canonical variables were actually formulated by two others 
working on the same problem. In truth, Hamiltonian dynamics in 
general, and the Hamilton-Jacobi equation in particular, was broad
ly used in the texts on celestial mechanics and astronomy.6 Never
theless, action-angle variables were also required in considering the 
old quantum mechanics.

5. For example, Duncan and Janssen (2014a), Eckert (2013a), pp. 44-48, (2013b), pp. 
210-213, Darrigol (1992), pp. 113-116, Mehra and Rechenberg (1982), pp. 223-227, 
Hund (1974) ,pp. 85-86, and Jammer (1966), pp. 102-104.
6. Shore (2003), p. 498. Shore’s paper discusses the aspect of how the classical 
dynamical problem linked to the old quantum theory. He also notes the Stark 
problem but pays little attention to action-angle variables.

Our examination also clarifies how ideas and notions that ap
pear in the 1918 paper emerged in constructing the action-angle 
variables. We specifically note the relationship between properties 
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of the Hamilton-Jacobi equation and conditionally periodic mo
tion, and the relationship among the notions of degenerate systems, 
angle variables, and quantum numbers. The idea for the adiabatic 
hypothesis, which Bohr also mentioned in his 1918 paper, can be 
related to the history of action-angle variables; however, we shall 
not pursue this point here.

2. The origin of action-angle variables: celestial mechanics

2.1 Jacobi’s achievements

Jacobi elaborated on Hamilton’s works on mechanics7 published in 
1834 and 1835. Jacobi rearranged his results and then delivered lec
tures on dynamics in Königsberg, titled Vorlesungen über Dynamik in 
1842-1843. These lectures provided a prototype of the Hamilton- 
Jacobi theory. Among Jacobi’s accomplishments, we focus on sub
jects related to the solutions of the Hamilton-Jacobi equation.

It should first be noted that Jacobi clarified a fundamental idea 
of the Hamilton-Jacobi theory. The idea was a way to reduce the 
solutions of a system of ordinary differential equations, the canoni
cal equations,8

 (1)

to those of a special type of first-order, non-linear, partial differen
tial equation, the Hamilton-Jacobi equation,

(2)

The complete integral has the form W = W(qY qn,yl /„), where 
Xi Y„ are arbitrary constants and ft can be taken to be the total 
energy. The solutions of Eq. 1 are given by

7. For this process, see Nakane and Fraser (2002).
8. Jacobi (1866) discussed initially the case when the function explicitly depends on 
time and then formulated the time-independent case. As the function H is time
independent in dynamical problems, we are only concerned with the latter.
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where the ßx s are arbitrary constants. In demonstrating these rela
tions, Jacobi indicated that IF corresponded to the action integral of 
the system in the dynamical theory.9 10

9. Hamilton’s original idea was that solutions of equations of motion are derived 
from the action integral of the system IV obtained by solving a special type of first- 
order partial differential equation. See Nakane and Fraser (2002).
10. Houzel (1978) discusses the history of this problem.

In general, solving a partial differential equation is more difficult 
than solving a system of ordinary differential equations, but Jacobi 
noted that if one finds appropriate coordinates that completely sep
arate the variables of the Hamilton-Jacobi equation, one can easily 
solve it. Jacobi showed that by using polar coordinates the Hamil
ton-Jacobi equation for the Kepler problem was completely separa
ble. Jacobi appealed to elliptical coordinates to solve the equations 
of motion of a particle gravitationally attracted by two fixed centers, 
a problem proposed by Leonhard Euler.“ It was one of the most 
remarkable achievements of the Hamilton-Jacobi theory. However, 
Jacobi realized that his method was very limited. He confessed that 
there was no general way to find such coordinates for a given Ham
ilton-Jacobi equation.

Instances when the variables are completely separable are very 
important for our argument. We often describe the Hamilton-Jaco
bi equation as solvable if its variables are completely separable. We 
shall discuss two cases related to solvable Hamilton-Jacobi equa
tions: one in which mathematicians and physicists succeeded in 
finding appropriate coordinates to solve the equation; the other in 
which they assumed that a given Hamilton-Jacobi equation has 
such coordinates and developed their discussions.

Jacobi’s discussion of the Hamilton-Jacobi equations is reminis
cent, for those who know modern Hamilton-Jacobi theory, of the 
idea of canonical transformations. These involve changes of varia
bles that conserve the original form of the canonical equations. The 
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complete integral of the associated Hamilton-Jacobi equation in
volves such a transformation. In his 1837 paper, Jacobi character
ized what is now called the generating function of the canonical 
transformation.11 12 However, in all his papers referred to in the early 
20th century, Jacobi never indicated that a complete integral of the 
Hamilton-Jacobi equation played the role of a generating function18 
Not only mathematicians and physicists but also historians often 
miss this fact.13

11. Hagihara (1970), pp. 53-54 indicates that the term generating function was 
introduced by Carathéodory in 1935. We adopt this term for the function that 
determines the canonical transformation, while noting that Carathéodory’s definition 
of the canonical transformation was different from that of Jacobi.
12. Jacobi (1890), a posthumously published paper, involved a proof of his statement.
13. For example, see Kline (1972), pp. 743-744 and Mehra and Rechenberg (1982) p. 
226, footnote 359. Because Jacobi’s accomplishment related to the canonical 
transformation is overestimated, the historical discussion of the Hamilton-Jacobi 
theory has been confusing. Exceptionally Klein (1926), pp. 203-205, grasped 
precisely Jacobi’s accomplishment and did not connect Jacobi’s transformation with 
a complete solution of the Hamilton-Jacobi equation.
14. Charlier (1902), pp. 80-81. The present paper adopts Stäckel’s results, which were 
introduced in Charlier’s book of 1902.

2.2 Stäckel ’s and Poincare’s results

Jacobi’s ideas blossomed in the late nineteenth century. One most 
important event for the quantum theory was Stäckel’s publication in 
1893 of several mathematical properties of a separable Hamilton-Jac
obi equation. His main result, which Charlier called Stäckel’s theo
rem, is as follows:14 a condition for the separability of variables in

is the existence of arbitrary functions of one variable

where A = does not identically vanish and the functions, 4 4,z
and U are determined by
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J__öA_

In this case,

(3)

where the yÅ s are integral constants, gives a complete solution of 
Eq. 2.

Stäckel thus provided a formula for solving the Hamilton-Jacobi 
equations. Solving a given Hamilton-Jacobi equation using this for
mula however is not practical, although it was effective for examin
ing the general properties of systems associated with solvable Ham
ilton-Jacobi equations. Stäckel demonstrated that such a system 
was composed of multiple one-dimensional periodic motions. In 
accordance with the terminology of Otto Staude, Stäckel called 
these motions conditionally periodic motions.15 As we shall see be
low, the relation between a solvable Hamilton-Jacobi equation and 
conditionally periodic motion is a key relationship that the theory 
would be noted for in the old quantum theory.

15. Stäckel (1893), p.554. Let us consider a system of two one-dimensional motions 
for which the frequencies are «>j and o>2. If ft,i / «5 is irrational the orbit returns 
infinitely close to the starting point after a sufficiently long duration. The motion is 
not periodic but very similar to being periodic. Additionally, a periodic motion 
occurs if ftij / ft>2 is rational; the system involving such a motion is called conditionally 
periodic. See Arnold (1989), pp. 285-287
16. Poincaré did not obtain the correct relationship among the variables of the 
generating function, the old canonical variables, and new ones. Although his 
description was confusing, I have adopted the relations that he introduced when 
deriving Delaunay’s equations as demonstrated in Poincaré (1892),pp. 24-26.

Jacobi’s idea of canonical transformations was also developed 
further in celestial mechanics. In les Me'thodes Nouvelles de la Me'canique 
Ce'leste published in 1892, Poincaré first introduced Jacobi’s first the
orem that showed a way to solve Eq. 1 using a complete solution of 
the associated Hamilton-Jacobi Eq. 2. He next indicated that the 
complete solution becomes a generating function of the canonical 
transformation16 which transforms Eq. 1 to
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dy. dH dß dH
— =----- ,— =-------- , /=1,2,...,«,
dt dßt dt dy[

Poincaré called it Jacobi’s second theorem even though Jacobi did 
not derive it. It is Poincaré who noted that the complete solution 
works as a generating function. Poincaré actually performed the ca
nonical transformation and derived the other type of canonical 
equation, Delaunay’s equation,17 from Eq. 1, using Jacobi’s second 
theorem. However, Poincaré did not prove Jacobi’s second theorem 
in any of his books and papers.

2.3 Charlier’s textbooks on celestial mechanics

Jacobi’s theory was mainly developed in mathematics and celestial 
mechanics. Quantum physicists knew the latest Hamilton-Jacobi 
theory through Charlier’s work. Charlier introduced Stäckel’s and 
Poincaré’s achievements in his book Die Mechanik des Himmels. At the 
end of the nineteenth century, several books on celestial mechanics 
were published.18 Among them, Charlier’s books concentrated on 
discussing properties of dynamic systems associated with solvable 
Hamilton-Jacobi equations. He also demonstrated several ways to 
reduce any system to a system associated with solvable Hamilton- 
Jacobi equations. For example, he effectively used Gyldén’s idea of 
intermediate orbit, which is an approximate orbit to the original 
and is associated with a solvable Hamilton-Jacobi equation.19

17. Delaunay’s equations are

dL dH dG dH d® dH

dt dl ’ dt dg’ dt dØ ’

dl dH dg dH d0 dH

. dt dL ’ dt dG’ dt d®

where 0 is the longitude of the node, g + 0 that of the perihelion, / the mean anomaly, 
and L = y[a,G = yjaß-e2), ® = Geos/, with a. e. and i denote the major axis, the ec
centricity, and the inclination. See Poincaré (1892), p. 25.
18. See Shore (2003).
ig. Gyldén (1841-1896) was a Finnish-Swedish astronomer, a leading theorist of 
celestial mechanics and planetary perturbations. See Markkanen (2009). Whittaker 
(1899) pp. 138-144 and Poincaré (1893), vol.2, pp. 202-227 devoted a chapter to
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The last chapter of the second volume of Charlier’s book began 
with transformation theory. In accordance with Poincaré’s sugges
tion, Charlier proved that a complete solution of the Hamilton-Ja
cobi equation leads to a canonical transformation, Jacobi’s second 
theorem. However, this theorem does not ensure that one can actu
ally solve the given Hamilton-Jacobi equation. Charlier then proved 
that a complete solution of Gyldén’s intermediate orbit can also be
come a generating function of the canonical transformation. After 
the transformation, he obtained new canonical variables. Noting 
Stäckel’s relation between a solvable Hamilton-Jacobi equation and 
conditionally periodic motion, he modified the new variables. Fi
nally, he derived the canonical variables that were composed of a 
linear function of time and an element of h in Eq. 3, an action inte
gral of motion, divided by 7t, specifically,

=~—'+g -7AWdcii’ / = 1 "

introduce Gyldén’s work including his idea on absolute and intermediate orbits.
20. The mean motion n is given by h = —— where P is the period of elliptic 
motion.

where C is the total energy that appears in the equation of the inter
mediate orbit, c, s are arbitrary constants, and oscillates between 
a, and Z>,.

Charlier applied his transformation theory to the motion in 
three-dimensional space. He chose an elliptical orbit as the inter
mediate orbit and performed the canonical transformation. The 
coefficient of time then becomes the so-called mean motion.80 The 
new canonical coordinates were composed of angle variables and 
action integrals divided by n. This is the origin of the action-angle 
variables. Angle variables were very common in celestial mechan
ics. Charlier showed that these variables could be related to the 
Hamilton-Jacobi theory. Indeed, Charlier never paid any special 
attention to them, leaving it to Schwarzschild to discover their im
portance.
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3. Action-angle variables and quantum theory

Now, let us examine the contributions resulting from the Stark ef
fect published at almost the same time in 1916. The work of the two 
contributors related to the Stark problem has already been de
scribed81. Here, we confirm a well-known relation involving Som
merfeld. The German physicist was interested in the Stark effect 
and had discussed the topic with Schwarzschild. Sommerfeld had 
turned the problem of the Stark effect over to Epstein, who was 
staying at Sommerfeld’s institute in Munich. Epstein knew of 
Schwarzschild’s idea through Sommerfeld.

21. For example, Duncan and Janssen (2014a), Eckert (2013a), pp. 45-48, (2013b), 
pp. 210-213, and Mehra and Rechenberg (1982), pp. 225-227.
22. Epstein (1916a); Schwarzschild (1916).
23. Epstein (1916b); Epstein (1916c).

Schwarzschild and Epstein both considered the motion of an 
electron attracted by a fixed center of force from an atomic nucleus 
in a homogeneous electric field. Both of them introduced the Ham
ilton-Jacobi equation for the total energy as

H =—(.v2 + v2 + z2) - —------ eEx , r2 = x2 + v2 + z2, (4)
2 ' r

where (x, y z) is the position of the electron of mass m, an overdot on 
x, y z denotes the derivative with respect to time, -e is the charge of 
the electron, /e (/ > 0) that of the nucleus, and E the intensity of the 
electron field.

Schwarzschild passed away on the day the paper was published. 
Epstein submitted a preliminary note that appeared on 15 April 
whereas Schwarzschild’s paper appeared on 11 May.88 Both ob
tained similar results involving the moving area of an electron in the 
Stark effect. After submitting his first full paper, “Zur Theorie des 
Starkeffekts” to Annalen der Physik, Epstein read Schwarzschild’s work 
and published a second full paper, “Zur Quantentheorie,” elaborat
ing on Schwarzschild’s results from a mathematical point of view.83

If one wants to know only the solutions of the Stark problem, it 
suffices to examine only Epstein’s first paper noting that Schwarzs
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child had chosen the alternative use of the action-angle variables.84 
Our interest though is the formation of the action angle variables. 
We examine Schwarzschild’s and Epstein’s procedures from this 
viewpoint. In comparison with Epstein’s first paper, his second did 
not give any notable argument to explain the Stark effect in the 
Bohr-Sommerfeld theory. This second paper involved essential ar
guments that bridged Schwarzschild’s ideas and the modern Ham
ilton-Jacobi theory. Our consideration also clarifies the advantage 
of Schwarzschild’s approach over Epstein’s approach in his first 
paper, which Sommerfeld indicated.85

3.1 Schwarzschild’s approach

In “Zur Quantenhypothese”, Schwarzschild formulated action-an
gle variables, developed the notion of degeneracy using these vari
ables, and showed that degeneracy occurs in the Stark effect. He 
first pointed out that the canonical system of Eq. 1 describing con
ditionally periodic motion could be transformed to

da. dH dm. dH

dt dcoi dt dat '

where a, is an integral constant and co, an angle variable linear in 
time tand expressible as co, = n,r + /?, with /?, a mean motion and/?, an 
initial value of the angle; he did not however give a way to obtain 
these new canonical variables. Schwarzschild apparently adopted 
Charlier’s idea that canonical variables can be constructed from 
angle variables. Because a,= const, with respect to time, the first 
equation of Eq. 5 suggests ^- = 0; therefore H is independent of 
co,s, specifically, H = H (ax a„. ‘ In contrast, the second equation of 
Eq. 5 gives

dH

dat

24. Duncan andjanssen (2014b) precisely examine Epstein’s procedure demonstrated 
in his first full paper.
25. Sommerfeld (1916), pp. 39-44; Sommerfeld (1919), pp. 500-501.
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As n, is the reciprocal of time, a, has the same dimension as an action 
integral. Therefore, Schwarzschild called the set of a, s action vari
ables and co,s angle variables/6 thereby establishing these terms. He 
continued referring to an action as a, and never wrote this in an ac
tion integral form in general arguments.

Schwarzschild defined a volume of phase space, an idea originat
ing with Max Planck, in terms of these new canonical variables87 as

Then, Schwarzschild noted the case for which

holds. He called the system degenerate if it involves such a mean 
motion /?,. More precisely, he noted that degeneracy occurs if one 
can choose integers (at least one of which is nonzero) for 
which

(6)

holds. For the degenerate system, Schwarzschild showed a way to 
construct new action-angle variables (»f ,a{ a ) from the old 
ones. Ifr (i<r <»-l) combinations of Eq. 6 exist for the system, one 
sets

' = A'"”®,+...+/nl"”®n, »/ = 1,/ = 1,

for which the mean motion is 0. The other ®,'s (/ = r+l w) are 
represented by appropriate linear combinations of co, s with integer 
coefficients. New action variables a, were similarly represented as 
linear combinations of a,.

Schwarzschild used these new action angle variables and consid-

26. Schwarzschild (1916), p. 549 adopted the terms WirkungsvariablexnA Winkelvariable, 
q. Mehra and Rechenberg (1982) , pp. 208-227 set Schwarzschild’s work in the 
context of consideration of phase space done by Ishiwara, Wilson, and Sommerfeld. 
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ered the phase-space volume. He found that orbits of the motion 
appear dense everywhere in a low-dimensional surface in phase 
space whereas they can appear in all parts of phase space if the sys
tem is non-degenerate.
Here Schwarzschild showed a way to derive action-angle variables 
by a transformation from (q^p^ to

dW c'li

where function W = W(qv...,qn,av...,an) leads this transformation. 
Schwarzschild sought the leading function that involves action var
iables. Poincaré and Charlier suggested that a complete solution of 
the Hamilton-Jacobi equation associated with Eq. 1 becomes the 
leading function. Although the solution involves n arbitrary con
stants, they do not become action variables directly. Then, Schwar
zschild assumed that such auxiliary variables riv-,ri„ that describe 
the cjjS as periodic functions of riv-,ri„ with period 2?r were intro
duced. Furthermore, he supposed that the leading function W has 
the form

T = a1771 + ... +akqll+T(al,...,all,ql,...,qll), (?)

where the a, s are integral constants and T is a periodic function of 
the constants and auxiliary variables //, with period 2?r with respect 
to //,. He then obtained the æ, s and a, s that satisfy the above-men
tioned relations and which become the angle and action variables.

Schwarzschild then discussed the Stark effect. He noted that the 
Stark problem was a special case of Jacobi’s two-center problem; 
that is to say, one center is taken to infinity. Because this Jacobi 
problem is separable in elliptical coordinates, Schwarzschild was 
able to introduce “elliptical coordinates for the special case”:“8

28. Schwarzschild (1916), p. 557. There are actually parabolic coordinates, which are 
the limiting case of elliptic coordinates.

^_r+x _r-x
2 ’ fJ'~ 2 ' 28 
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in the plane defined by the direction of the electric field (he chose 
the x-direction) and the radius vector joining the nucleus (at the 
origin) and the electron. He chose (j> to describe the angle between 
the above-mentioned plane and a fixed plane through the x-axis. 
These coordinates made the Hamilton-Jacobi equation Eq. 4 com
pletely separable. Then, for the solution W, the action integral was 
written in the form

II //,(<) I // .(//)■ H j/.a).

Schwarzschild did not describe the orbit in terms of A, /z, and (j) but 
introduced action-angle variables using W. In general, h in the form 
Eq. 7 is not easy to construct. However, each (i = 1,2.3) is a one- 
variable function. He succeeded in finding the auxiliary variable //, 
for each part and represented Wf as an integral of a function of z;,/9 
setting

29. Schwarzschild (1916), pp. 558-561, integrated the function from //, = 0 to //, 2ji, set 
dlV,at (/ = 1.2) and obtained Eq. 8. Because —-= y3, he obtained U'3 = y3 ©arid set a3 9<f>

= Ys-

(8)

where ?(//,) is a periodic function of period 2zr. Using these action 
variables, he obtained the relation

dH
da3

That is, degeneracy occurs in the Stark effect. He introduced modi
fied action-angle variables and showed that an electron orbit ap
pears on a two-dimensional surface in three-dimensional space.

3.2 Epstein ’s approach

Epstein’s first full paper also succeeded in solving the Hamilton- 
Jacobi equation for the Stark effect. Epstein introduced parabolic 
coordinates 29

303



MICHIYO NAKANE SCI.DAN.M. I

which also made the Hamilton-Jacobi equation completely separa
ble. His coordinates are related to those of Schwarzschild if one sets
X = /2, /i = i;2. Distinct from Schwarzschild, Epstein obtained the or

bit of the electron in accordance with Jacobi’s method through a 
complete solution of the equation for the problem

2

n—r 42 +7/2 
V = ^, r = y]x + V = - ? ,

30. Because he considered real motions of the electron,/© > 0 and ///)> 0 were 
required. These conditions determine the two appropriate zero points for each 
function that have more zero points. See Epstein (1916b), pp. 497-501.

IF = maf + £+ £y]f2(q)dq,

where a is integral. He produced the same results as Schwarzschild, 
in that the electron moves in a lower-dimensional surface of the 
three-dimensional space. Next, Epstein assumed Sommerfeld’s 
quantum condition for the problem:

where % denote the zero points of/U") and/0/)30, h is Planck’s 
constant, and the //,s are quantum numbers. He applied them to the 
Stark effect and succeeded in explaining the experimental results. 
In addition to Sommerfeld’s application of his quantum condition 
to the elliptical motion, Epstein’s argument suggests that the coor
dinates that make the associated Hamilton-Jacobi equation com
pletely separable are appropriate coordinates for Sommerfeld’s 
quantum conditions.

In his second paper, Epstein reformulated Schwarzschild’s argu
ments on action-angle variables and introduced the idea of degen
eracy, which Epstein never introduced in his first paper. Epstein as
sumed that the coordinates q2 q„ made the Hamilton-Jacobi 
equation completely separable. Then, for the action integral, the 
solution of the Hamilton-Jacobi equation becomes
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Epstein set Sommerfeld’s quantum condition as

(9)

and showed that the total energy depends on (If} Fjj.Then, he 
explained degeneracy by considering the geometrical figures of the 
orbits for the degenerate system. He also noted that multiple coor
dinates make the Hamilton-Jacobi equations completely separable 
for the degenerate system.

Epstein introduced action-angle variables a„) from 
Stäckel’s general theory on the separable Hamilton-Jacobi equa
tion. Epstein’s procedure did not explicitly introduce the canonical 
transformation and was completely different from Schwarzschild’s 
method. Noting that motions are conditionally periodic in the sys
tem that was described by the separable Hamilton-Jacobi equation, 
Epstein demonstrated a variable col = ntt+ßt with //, a mean motion 
and /?, an initial value of the angle becomes canonical conjugate to 
h; defined by Eq. 9 using Stäckel’s formulas demonstrated in Char
lier’s books. Epstein next showed the action variables a, were ex
pressible as —, i.e., the action integral divide by In. He explicitly 
related action integrals to action variables while Schwarzschild did 
not so. In addition, the action variables are related to quantum 
numbers via the final identity:

■ 2n J
— Wldml = tr = n.h. 

«In-

Then, the degeneracy can be discussed not only in terms of the ac
tion variables but also quantum numbers. Furthermore, Epstein 
established the degree of degeneracy: the number of combinations, 
Eq. 6, is called as the degree of degeneracy. In addition, Epstein ar
gued that the orbits move on an (/? - s)-dimensional surface when 
the degree of degeneracy is a.

3.3 Introduction of action-angle variables in Bohr’s 1918 paper

Although Bohr’s 1918 paper mentioned Schwarzschild’s use of an
gle variables, it did not refer to Schwarzschild’s introduction of ac
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tion-angle variables though Schwarzschild actually used action vari
ables as canonical conjugate of angle variables. Instead, Bohr wrote 
in the footnote “..., the connection between the notion of angle vari
ables and the quantities I, discussed by Epstein in the latter paper, 
may be briefly exposed in following elegant manner...”.31 32 * It is how
ever essential for Bohr’s discussion in the text of the 1918 paper that 
the action variables explicitly indicate the action integral. Bohr then 
insisted on Epstein’s construction of the action-angle variables.

31. Bohr (1918), p.29-30. Here Epstein’s latter paper means his second full paper. The 
quantities I denote It = f pt(qt,aI,...,all)dqt (k = l,...,n), where a1,...,an are arbitrary 
constants of a complete solution of the given Hamilton-Jacobi equation.
32. Bohr introduced expressions for the 'z,s in terms of the 4s in the complete solution
and used the modified complete solution as a generating function.

Combining Schwarzschild’s and Epstein’s ideas, Bohr intro
duced his definition of the action-angle variables in a footnote to his 
1918 paper. Under the assumption that the variables of the Hamil
ton-Jacobi equation that correspond with Eq. 1 are completely sepa
rable, Bohr performed a canonical transformation on the equation 
of motion and derived action-angle variables for the dynamical sys
tem.38 The former variables are the action integrals. Bohr wrote that 
this formulation had been suggested by Hendrik Kramers.

In the footnote, Bohr wrote that Jacobi’s theorem was proven in 
Chapter 37 of Jacobi’s Vorlesungen, which only has 36 chapters. The 
Jacobi theorem that Bohr mentioned had been called by Poincaré 
Jacobi’s second theorem. As we mentioned before, this theorem had 
been proved not by Jacobi but by Charlier. Because Poincaré had 
associated Jacobi’s name, Bohr as well as, mathematicians, physi
cists, and historians, seemed to have been confused and have found 
illusionary descriptions in Jacobi’s Vorlesungen.

4. Conclusions

As we see now, the introduction and the development of the idea of 
action-angle variables were strongly connected to discoveries of 
mathematical properties of solvable Hamilton-Jacobi equations 
performed in the late nineteenth century and through the begin- 
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ning of the twentieth century. Almost all contributions that we have 
examined were written under the assumption that the variables of 
the Hamilton-Jacobi equation describing the motion of particles 
were completely separable. Stäckel showed that the solutions of a 
separable Hamilton-Jacobi equation were expressible as exact for
mulas. Using these formulas, he demonstrated that motions of the 
system that are associated with a separable Hamilton-Jacobi equa
tion are conditionally periodic.

Based on Stäckel’s result, mathematicians and physicists devel
oped their ideas related to formulating the action-angle variables. 
Charlier proved that a complete solution of a separable Hamilton- 
Jacobi equation becomes a generating function of the canonical 
transformation. Noting Stäckel’s formulas, Charlier attained new 
canonical equations that have an angle variable and an action inte
gral as canonical coordinates. Schwarzschild generalized Charlier’s 
idea and defined action-angle variables. He introduced the notion 
of degeneracy and showed that degeneracy occurred in the Stark 
effect. It is Epstein who explicitly connected action variables and 
action integral, and showed his action variables become canonical 
conjugate to angle variables referred to in Stäckel’s formulas. The 
Bohr-Kramers definitions were introduced based on the definitions 
of Schwarzschild and Epstein.

Hence, a completely separable Hamilton-Jacobi equation is a 
sufficient condition for the occurrence of conditionally periodic 
motion and for defining action-angle variables in the system. The 
main interest for quantum physicists, including Bohr, was condi
tionally periodic motion. Because this motion also occurs in sys
tems associated with non-solvable Hamilton-Jacobi equations, the 
assumption of a separable Hamilton-Jacobi equation was too strong 
for their purposes. Their next step was to drop this condition. This 
procedure is, however, beyond the scope of this paper.
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